Мощность радиаторов отопления

Мощность радиаторов отопления

Содержание

Мощность радиаторов отопления: подробно и обо всем

Мощность радиаторов отопления

Эта статья раскроет секреты всем кого интересует вопрос, как определить мощность радиатора отопления? И вам не придется обращаться по этому вопросу к специалистам и платить им за это деньги.

Инфракрасное излучение радиатора

Упрощенный расчет

Напомним вам, что тепло, которое получает помещение от батарей, должно быть равно потерям теплоты этого помещения. Одним словом, сколько ушло теплоты – столько и пришло.

Есть упрощенный расчет, который утверждает, что на каждые десять квадратных метров площади комнаты должен приходиться радиатор с мощностью не менее одного киловатта. Практика показывает, что лучше взять с небольшим запасом, больше полученной мощности процентов на пятнадцать. Для этого полученный результат умножаем на коэффициент 1,15.

Специалисты пользуются более точными расчетами, но чтобы произвести грубый расчет метода описанного выше будет достаточно. Используя этот приблизительный подсчет, мощность может получиться немного больше требуемой, но увеличится и качество системы, а также появится возможность работы при низком температурном графике.

Изменение мощности от метода установки

Покупка радиатора

Во время приобретения отопительных приборов в специальных магазинах, инструкция батарей имеет технические характеристики и мощность. Последняя может указываться в зависимости от расхода теплоносителя или в ваттах. В том случае если мощность указана в расходе, то один литр в минуту равен одному киловатту.

Читайте статью по теме — Расчет радиаторов отопления и необходимой тепловой мощности.

Также указываются  размеры приборов. Наиболее распространенные размеры с высотой двести, триста, четыреста, пятьсот и шестьсот миллиметров. Приборы, которые имеют высоту двести миллиметров и меньше называются плинтусными.

Стальной радиатор

Высота шестьсот миллиметров типичная для чугунных приборов, и новые батареи с такой высотой идеально подойдут для замены старых. Но при внешних одинаковых габаритах мощность стальных радиаторов отопления будет больше старых чугунных. В домах новой постройки изготавливают большие окна и низкие подоконники, в таких случаях подойдут приборы высотой пятьсот миллиметров.

Наиболее распространенные системы отопления в зависимости от напора:

  • Низкотемпературные – 55/45 градусов;
  • Среднетемпературные – 70/55;
  • Высокотемпературные – 90/70.

Если вы обратите внимание, то увидите, что рядом с мощностью стоят еще и цифры. К примеру, 70/55. Это говорит о том, что указанная теплоотдача возможна в случае прохождения воды через радиатор с температурой семьдесят градусов, которая охлаждается до пятидесяти пяти.

Есть также батареи, у которых указанна тепловая мощность при работе с водой 90/70 и 55/45. В таком случае чтобы узнать теплоотдачу для необходимой нам системы 70/55 нужно рассчитывать её своими руками. Поэтому обратите на этот момент внимание при покупке радиатора.

Источник: https://otoplenie-gid.ru/elementy/radiatori/185-moshhnost-radiatorov-otopleniya

Как узнать мощности стальных радиаторов отопления: их особенности

Что может быть неприятней дорогих и холодных батарей в зимний сезон?

Иногда при замене старой отопительной системы люди задаются вопросом, какие установить обогреватели, вместо того, чтобы подумать, как узнать мощность панельного радиатора и сверить ее с имеющимся в системе давлением и теплоносителем.

Только понимая, что такое теплоотдача и от чего зависит ее уровень, можно правильно подобрать радиаторы в помещения.

Свойство теплоотдачи

Мощность стальных радиаторов отопления, так же как и всех остальных видов обогревателей основана на принципе их работы:

  1. Теплоноситель, попадая в батарею, циркулирует по резервуару (у стальных панельных моделей – это каналы), при этом в горячем состоянии он направлен вверх, тогда как при остывании идет вниз. В автономной или централизованной отопительной системе нагревом носителя занимается котел.
  2. За время, что горячая вода соприкасается с радиатором, она отдает ему свое тепло, нагревая его стенки. Этот момент очень важен, так как от размера обогревателя зависит, какой длины будет ее путь, и чем он дольше, тем горячее радиатор.
  3. Нагретые стенки конструкции отдают свою температуру воздуху, который распространяется по помещению под воздействием потоков тепла.
  4. Чтобы увеличить уровень теплоотдачи, производители «снабжают» отопительный прибор теплообменниками, как это видно по стальным радиаторам типа 11, 22 и 33.

Наличие теплообменников значительно увеличивает мощность стальных радиаторов, работая по двум нагревательным принципам: радиаторному, при котором используется тепло стенок устройства, и конвекторному, который образует движение разогретого воздуха.

Как правило, показатели мощности изготовитель указывает в техпаспорте, поэтому можно ориентироваться по нему, но еще лучше самостоятельно произвести расчеты с учетом площади помещения, температуре воздуха и количеству теплопотерь.

Последствиями неправильно подобранного обогревателя являются:

  1. Так называемое перетапливание, когда в помещении настолько жарко, что приходится держать форточку открытой. Это создает вредный для организма микроклимат, вынуждает платить больше за энергозатраты или устанавливать термостаты, чтобы снижать нагрузку на систему.
  2. Если мощность панельных стальных радиаторов отопления ниже необходимого уровня, то в комнате холодно даже при их максимальной нагрузке.
  3. Сильные перепады давления в отопительной системе, оснащенной слабыми батареями, приведет к аварии, так как они не выдержат подобных «стрессов».

Всех перечисленных проблем можно избежать, если знать, что именно влияет на теплоотдачу батарей отопления, и как поднять их эффективность.

Что влияет на теплоотдачу?

При выборе модели обогревателя нужна таблица мощности стальных радиаторов, которую потребителям должен предоставлять производитель или продавец-консультант.

Так же следует учесть несколько нюансов, которые им присущи:

  1. Перед покупкой новых батарей отопления следует поинтересоваться, какая температура теплоносителя в системе. Чем она горячее, тем выше будет нагрет радиатор, а значит, и теплоотдача будет больше. Узнав точную температуру, нужно сравнить ее с показателями выбранной модели, которые указываются в техпаспорте. Для безопасной и эффективной работы они должны совпадать.
  2. Размер радиатора имеет значение. Чем он больше, тем дольше в нем находится носитель, а от этого горячее становятся его стенки.
  3. Теплопроводность материала так же важна. В данном случае речь идет о листовой стали не более 1.5 мм толщины, что указывает на способность быстро нагреваться.

Из таких нюансов складывается мощность панельных радиаторов, поэтому при ее расчете следует учитывать все их параметры.

Особенности батарей из стали

Конструкция панельных радиаторов такова, что они изготавливаются из двух штампованных листов стали, соединенных вместе, внутри которых находятся 2 горизонтальных канала вверху и внизу и по 3 вертикальных на каждые 10 см длины.

Слабым «звеном» подобных обогревателей является узость этих каналов, поэтому так важно, чтобы теплоноситель был без примесей. В централизованной отопительной системе это невозможно поэтому, сделав выбор в пользу радиаторов из стали, нужно устанавливать фильтр на входе подачи теплоносителя в подающую трубу квартиры.

Как правило, кВт стальных радиаторов зависит от их типа и в среднем составляет 0.1-014 на секцию:

  1. Для типа 11, который состоит из одной секции и конвектора при глубине 63 мм мощность равна 1.1 кВт.
  2. Для 22 типа, состоящего из двух секций с двумя конвекторами при глубине 100 мм – это 1.9 кВт.
  3. 33-тий тип признан самым эффективным, так как состоит из трех секций с тремя конвекторами при глубине 150 мм. Мощность панельного стального радиатора этого типа равна 2.7 кВт.

Для примера были взяты конструкции с конвекторами, так как без них стальные панели малоэффективны и годятся для небольших автономных систем отопления.

Чтобы сделать правильный выбор, следует перед покупкой ознакомиться со следующими параметрами:

  1. Сколько кВт в 1 секции стального радиатора.
  2. Как влияет высота и длина изделия на его мощность.
  3. Сколько в нем секций и конвекторов.

Только получив ответы на эти вопросы, можно подобрать оптимальный вариант обогревателя для каждого помещения в отдельности.

Источник: http://netholodu.com/elementy-otopleniya/radiatory/stalnye/moshhnost.html

Мощность 1 секции биметаллических радиаторов отопления

Мощность 1 секции биметаллических радиаторов отопления

/ Радиаторы / Мощность 1 секции биметаллических радиаторов отопления

Основной задачей любой батареи отопления является обогрев помещения. По этим причинам теплоотдача — главный параметр, который стоит учитывать при покупке. Для каждой модели отопительных приборов значения теплоотдачи разные, в том числе и для биметалла. На этот параметр влияет объём и количество секций.

Итак, какая мощность 1 секции биметаллических радиаторов отопления? Зная значение, можно правильно рассчитать необходимый размер прибора.

Что такое теплоотдача

Биметаллический радиатор отопления

Определение теплоотдачи сводится к паре простых слов — это количество тепла, выделяемое радиатором в течение определённого времени. Мощность радиатора, тепловая мощность, тепловой поток — обозначение одного понятия и измеряется в Ваттах. Для 1 секции биметаллического радиатора это число равно 200 Вт.

Таблица теплоотдачи радиаторов отопления

В некоторых документах встречаются значения теплоотдачи, рассчитанные в калориях за 1 час. Во избежание путаницы, калории легко переводятся в Ватты с помощью простейших подсчётов (1 Вт = 859,8 кал/час).

Тепло от батареи обогревает комнату в результате трёх процессов:

  • теплообмена;
  • конвекции;
  • излучения.

Процесс обогрева комнаты

Каждая модель отопительных приборов использует все виды обогрева, но в разных пропорциях. Например, радиатором считаются те батареи, передающие в окружающее пространство от 25% тепловой энергии посредством излучения. Но сейчас термином «радиатор» начали называть любой отопительный прибор вне зависимости от основного метода обогрева.

Размеры и ёмкость секций

Биметаллические радиаторы за счёт вставок из стали компактнее алюминиевых, чугунных, стальных моделей.

В какой-то степени это неплохо, чем меньше секция по размерам, тем меньше требуется теплоносителя для обогрева, а значит в эксплуатации батарея экономичнее по расходам теплоэнергии.

Однако, чересчур узкие трубы быстрее засоряются мусором и хламом, которые являются неизбежными спутниками в современных тепловых сетях.

Мусор и грязь в батарее отопления

У хороших моделей радиаторов из биметалла толщина стальных сердечников внутри как у стенок обычной водопроводной трубы. От ёмкости секций зависит теплоотдача батареи, а межосевое расстояние непосредственно влияет на параметры ёмкости:

  • 20 см — 0,1-0,16 л;
  • 35 см — 0,15-0,2 л;
  • 50 см — 0,2-0,3 л.

Из приведённых данных следует, что радиаторам из биметалла требуется малое количество теплоносителя. К примеру, отопительный прибор из десяти секций 35 см высотой и 80 см в ширину вмещает лишь 1,6 л.

Несмотря на это, силы теплового потока достаточно, чтобы прогреть воздух в комнате площадью 14 кв. м.

Стоит учесть, что у батареи такого размера вес почти в два раза больше, чем у алюминиевых аналогов — 14 кг.

Подавляющее большинство батарей из биметалла можно приобрести в специализированных магазинах по одной секции и собрать радиатор ровно таких размеров, какие требует помещение.

Это удобно, хотя существуют цельные модели с фиксированным количеством секций (обычно не более 14 штук). У каждой детали по четыре отверстия: два входных и два выходных. Их размеры могут разниться от модели отопительного прибора.

Чтобы радиаторы из биметалла было проще собирать, два отверстия сделаны с правой резьбой, а два — с левой.

Сборка биметаллических радиаторов отопления

Как правильно подобрать нужное количество секций

Теплоотдача биметаллических приборов отопления указана в техпаспорте. На основе этих данных и производятся все необходимые расчёты. В случаях, когда значение теплоотдачи в документах не указано, эти данные можно посмотреть на официальных сайтах производителя либо воспользоваться при расчётах усреднённым значением. Для каждой отдельно взятой комнаты должен проводиться свой расчёт.

Чтобы посчитать нужное число секций из биметалла, нужно учитывать несколько факторов. Параметры теплоотдачи у биметалла немного выше, чем у чугуна (с учётом одинаковых условий эксплуатации. Для примера, пусть температура теплоносителя будет 90° С, тогда мощность одной секции из биметалла — 200 Вт, из чугуна — 180 Вт).

Таблица расчета мощности нагрева радиатора

Если вы собрались менять чугунный радиатор на биметаллический, то при тех же размерах новая батарея будет греть чуть лучше, чем старая. И это хорошо. Стоит учитывать, что со временем теплоотдача будет чуть меньше из-за возникновения засоров внутри труб. Батареи засоряются отложениями, которые появляются из-за контактов металлов с водой.

Поэтому если вы все же решитесь на замену, то спокойно берите то же количество секций. Иногда устанавливают батареи с небольшим запасом в одну или две секции. Это делается, чтобы избежать потерь теплоотдачи из-за засорения. А вот если вы приобретаете батареи для нового помещения, без расчётов не обойтись.

Расчёт по габаритам

Теплоотдача радиаторов зависит от объёма помещения, которое необходимо обогреть. Чем больше комната, тем больше потребуется секций. Поэтому самый простой расчёт — по площади комнаты.

Для сантехники существуют особые нормы, строго регламентированные СНиП. Батареи не являются исключением.

Для зданий в полосе с умеренным климатом стандартная мощность отопления составляет 100 Вт на каждый квадратный метр комнаты.

Посчитав площадь помещения, умножив ширину на длину, необходимо еще умножить полученное значение на 100. Так получится общая теплоотдача батареи. Осталось только разделить её на параметры теплоотдачи биметалла.

Формула для расчета количества секций по габаритам комнаты

Для комнаты 3х4 м. подсчёт будет выглядеть следующим образом:К = 3х4х100/200 = 6 шт.

Формула предельна проста, но позволяет вычислить лишь приблизительное количество секций из биметалла. В этих расчётах не учтены такие важные параметры как:

  • высота потолков (формула более или менее точна при потолках не выше 3 м.);
  • расположение комнаты (северная сторона, угол дома);
  • количество оконных и дверных проёмов;
  • степень утепления внешних стен.

Насколько сильно должна греть батарея

Расчет по объему

Расчёты теплоотдачи батареи по объёму комнаты немного сложнее. Для этого понадобится знать ширину, длину и высоту помещения, а также нормативы отопления, установленные для одного м3 — 41 Вт.

Какой теплоотдачей должны обладать биметаллические радиаторы для комнаты 3х4 м. с учётом высоты потолков в 2,7 м: V = 3х4х2,7 = 32,4 м3.
Получив объём, легко посчитать теплоотдачу батареи: Р = 32,4х41 = 1328,4 Вт.

В итоге количество секций (с учётом тепловой мощности батареи при высокотемпературном режиме 200 Вт) будет равно: К = 1328,4/200 = 6,64 шт.
Полученное число, если оно не целое, всегда округляется в большую сторону. Исходя из более точных расчётов, понадобится 7 секций, а не 6.

Коэффициенты поправки

Несмотря на одинаковые значения в техпаспорте, фактическая теплоотдача радиаторов может отличаться в зависимости от условий эксплуатации. Учитывая, что выше приведённые формулы точны только для домов со среднестатистическими показателями утепления и для местностей с умеренным климатом, при других условиях необходимо вводить поправки в расчёты.

Коэффициенты поправки при расчете количества секций батарей отопления

Для этого полученное в ходе вычислений значение дополнительно умножается на коэффициент:

  • угловые и северные комнаты — 1,3;
  • регионы с экстремальными морозами (Крайний Север) — 1,6;
  • экран или короб — прибавляйте ещё 25%, ниша — 7%;
  • для каждого окна в комнате общая теплоотдача для помещения увеличивается на 100 Вт, для каждой двери — 200 Вт;
  • коттедж — 1,5;

Важно! Последний коэффициент при расчёте биметаллических радиаторов используется крайне редко, потому что такие приборы отопления почти не ставят в частных домах из-за дороговизны.

Биметаллические батареи отопления

Эффективная теплоотдача

Значения тепловой отдачи для радиаторов указаны в техпаспорте или на сайтах производителей. Они подходят для конкретных параметров отопительных систем. Тепловой напор системы — важная характеристика, которую нельзя игнорировать при проведении необходимых вычислений.

Обычно значение теплоотдачи 1 секции приводится для теплового напора 60° С, что соответствует высокотемпературному режиму отопительной системы с температурой воды 90°С. Такие параметры сейчас встречаются в старых домах.

Для новостроек уже используются более современные технологии, при которых уже не требуется высокого теплового напора. Его значение для отопительной системы равно 30 и 50° С.

Температурный график системы отопления

Из-за разных значений теплового напора в техпаспорте и по факту, необходимо пересчитать мощность секций. В большинстве случаев она оказывается ниже заявленной. Значение теплоотдачи умножают на реальное значение теплового напора и делят на то, что указано в документах.

Эффективная теплоотдача батарей отопления в зависимости от способа установки и подключения

Параметры отдачи одной секции биметаллической батареи отопления напрямую влияют на её габариты и способность обогревать помещение. Сделать точные расчёты, не зная значения теплоотдачи биметалла, невозможно.

https://www..com/watch?v=ZkvOaJlQetM

Фотогалерея (11 фото)

Биметаллический радиатор отопления Таблица теплоотдачи радиаторов отопления Процесс обогрева комнаты Мусор и грязь в батарее отопления Таблица расчета мощности нагрева радиатора Сборка биметаллических радиаторов отопления Форму для расчета количества секций по габаритам комнаты Коэффициенты поправки при расчете количества секций батарей отопления Эффективная теплоотдача батарей отопления в зависимости от способа установки и подключения Биметаллические батареи отопления Температурный график системы отопления

13.11.2016

Источник: http://gopb.ru/radiatory/moshhnost-1-sekcii-bimetallicheskix-radiatorov-otopleniya/

Как рассчитать мощность радиаторов?

Оцените материал Современные радиаторы

Новые системы центрального отопления, как правило, монтируются на основе проектов, которые включают точную мощность радиаторов. Однако в случаях, когда производится ремонт и замена старых радиаторов, например, замена чугунных на алюминиевые, тогда мощность определяется упрощенным менее точным способом.

Правильно рассчитанная мощность радиаторов должна перекрывать потери тепла и обеспечивать такое его количество, которое позволит достичь теплового комфорта, соответствующего для данного помещения. Считается, что самая высокая температура (24° C) должна присутствовать в ванной комнате.

Немного более низкие значения (около 20-22° C) подходят для жилых комнат, а еще ниже (18° C) – для спальни, кухни или коридора. Таким образом, мощность и размеры радиаторов для этих помещений должны быть разными.

На практике, во время подбора оборудования, более важным является площадь или объем отдельных помещений, наличие в них окон, их размер и герметичность, и теплоизоляцию стен.

Расчет мощности

Планируя покупку новых радиаторов для дома или квартиры, стоит узнать как можно больше информации о существующей системе отопления и о самом здании.

В этом случае возможно использование простых калькуляторов или готовых таблиц, которые создали некоторые производители специально для своих клиентов.

Благодаря им, во многих точках продаж, необходимые нам расчеты делают продавцы, что значительно упрощает дело.

Необходимую мощность отопительного оборудования, вы можете также рассчитать самостоятельно, используя простой метод. Следует подчеркнуть, что этот способ не очень точный и не гарантирует правильных расчетов. Следовательно, мы не можем быть абсолютно уверенными в том, что рассчитанная таким образом мощность нагрева будет правильной.

Расчет по площади

  • в старых зданиях, которые не имеют никакой теплоизоляции – 120 – 200 Вт/м²;
  • в зданиях, утепленных минеральной ватой или пенопластом, у которых коэффициент теплопроводности стен составляет около 0,3 Вт/м²хК – 60 – 80 Вт/м²;
  • в зданиях, утепленных очень хорошо, где была применена необходимая толщина утеплителя, который устраняет «мостики холода» – 30 – 50 Вт/м².

После примерного определения типа стен из списка выше, получаем необходимую нам мощность радиаторов. Как было уже упомянуто выше – это лишь примерное значение.

Таблица: расчет общей мощности радиаторов по площади помещения

Таблица расчета мощности радиаторов по площади помещения

Расчеты не учитывают такие факторы, как:

  • количество и тип окон;
  • влияние соседних помещений (особенно неотапливаемых) на помещение с подогревом;
  • влияние и количество внешних перегородок, находящихся в отапливаемом помещении.

Как заменить старый нагреватель?

Старые чугунные радиаторы все чаще и чаще, заменяют новыми. Их меняют из-за истекшего срока эксплуатации или непривлекательного внешнего вида.

Такие обогреватели имеют стандартную высоту 60 см и, как правило, устанавливались под окнами. В настоящее время их заменяют наиболее современными пластинчатыми радиаторами.

Для того чтобы определить мощность нового радиатора нужно посчитать количество ребер старого, например, чугунного. Каждое ребро имеет мощность 130 Вт.

Температура воды в отопительной системе

Температура воды, протекающей через систему центрального отопления во время подбора мощности радиаторов не менее важный параметр. Ниже мы приводим приблизительные значения для различных источников тепла, включая, в первую очередь, температуру подачи воды, температуру обратки и температуру в помещении.

  • в старых квартирах – 90/70C/20С;
  • в новых квартирах – 75/65/20;
  • в домах, оборудованных котлом на газе или мазуте – 75/65/20;
  • в зданиях, где установлен конденсационный котел – 55/45/20;
  • в зданиях с работающими тепловыми насосами – 50/40/20.

Для более точных расчетов нужно дополнительно применять так называемый поправочный коэффициент. Его значение обычно указывается производителями данных устройств.

Основные параметры, определяющие мощность отопительных приборов

Как это уже было упомянуто выше – самым главным параметром, определяющим мощность нагревателя это теплопотери здания. Однако для точных расчетов, проектирования учитывается еще много других факторов. К ним относятся:

  • климатическая зона и расположение здания относительно сторон света;
  • тип источника тепла;
  • потери тепла из обогреваемого помещения;
  • фактор нагрева (температура воды, подачи и возврата, а также температура, которая должна быть в помещении;
  • вид помещения и порядок размещения отопительного прибора.

Когда следует выбрать радиатор больше рассчитанной мощности?

Ситуации, в которых мы должны увеличить мощность покупаемых радиаторов. К таким ситуациям следует отнести:

  • невозможность установки в правильном месте, то есть под подоконником;
  • увеличение площади остекления (по отношению к поверхности, которая существовала в момент проектирования системы отопления);
  • желание использовать термостатические клапаны, о которых не было речи в проекте отопления (мощность радиаторов повышается примерно на 10–15%).
  • Название публикации: Расчет мощности радиаторов отопления, по площади и по таблице

Прочитано 3191 раз Последнее изменение Понедельник, 16 Январь 2017 06:04 Расчет радиаторов отопления

Источник: http://postroy-sam.info/inzhenernye-seti/249-kak-rasschitat-moshchnost-radiatorov.html

Таблица расчета мощности стальных радиаторов отопления

Чтобы максимизировать эффективность отопительной системы, нужно сделать правильные расчеты площади и приобрести качественные отопительные элементы, которые будут подходить своими техническими характеристиками именно под нужную отопительную систему. Теплоотдача в таком случае будет также максимальной.

Формула с учетом площади

Формула расчета мощности стального устройства отопления с учетом площади:

Р = V x 40 + потери тепла из-за окон + потери тепла из-за наружной двери

  • Р – мощность;
  • V – объем помещения;
  • 40 Вт – тепловая мощность для обогрева 1м3;
  • потери тепла из-за окон – расчет из значения 100 Вт (0,1 кВт) на 1 окно;
  • потери тепла из-за наружной двери – расчет из значения 150-200 Вт.

Пример:

Комната 3х5 метров, с высотой 2,7 метров, с одним окном и одной дверью.

Р = (3 х 5 х 2,7) х40 +100 +150 = 1870 Вт

С помощью этих расчетов можно узнать, какая будет теплоотдача устройством отопления на обеспечение достаточного обогрева заданной площади.

Но, если комната расположена на углу или торце здания, к расчетам мощности батареи нужно добавить еще 20% запаса. Столько же нужно добавлять в случае частых понижений температуры теплоносителя.

Стальные радиаторы отопления в среднем значении выдают 0,1-0,14 кВт/секции теплоэнергии.

Т 11 (1 секция)

Глубина емкости: 63 мм. Р = 1,1 кВт

Т 22 (2 секции)

Глубина емкости:100 мм. Р = 1,9 кВт

Т 33 (3 секции)

Глубина емкости: 155 мм. Р = 2,7 кВт

Мощность Р приведена для батарей высотой 500 мм длиной 1 м при dT = 60 град (90/70/20) – типовая конструкция радиаторов, подходит для моделей стальных изделий от разных производителей.

Таблица: теплоотдача радиаторов отопления

Расчет на 1 (11 тип), 2 (22 тип), 3 (33 тип) секции   

Теплоотдача отопительного устройства должна быть не менее 10% от площади помещения, если высота потолка менее 3 м.Если потолок выше, то прибавляется еще 30%.

Как правило, в комнате батареи устанавливаются под окнами у наружной стены, вследствие чего, тепло распространяется самым оптимальным образом. Холодный воздух из окон блокируется тепловым потоком с радиаторов, идущим вверх, тем самым исключает образование сквозняков.

Если жилое помещение расположено в районе с суровыми морозами и злыми зимами, нужно полученные цифры умножать на 1,2 – коэффициент потери тепла.

Еще один пример расчета

За пример взято помещение площадью 15 м2 и с высотой потолка 3 м. Рассчитывается объем комнаты: 15 х 3=45 м3. Известно, что для обогрева помещения в местности со средним климатом нужно 41 Вт/1 м3.

45 х 41 = 1845 Вт.

Принцип тот же, что и в предыдущем примере, но не учитываются потери теплоотдачи из-за окон и двери, что создает определенный процент погрешности. Основное, для правильного расчета – нужно знать, сколько выдают тепла секции, каждая из них.

Секции могут быть в разном количестве у стальных панельных батарей от 1 до 3. Сколько секций у батареи на столько, соответственно, и усилится теплоотдача.

Чем больше теплоотдача от системы отопления, тем лучше, ведь для того она и была придумана.

Только по сути, добиться такого эффекта довольно сложно, если положиться только на свои знания. Информация – сила и возможности.

Источник: https://poluchi-teplo.ru/radiatoryi/stalnyie/raschet-moshhnosti-stalnyih-radiatorov.html

Расчет мощности батарей отопления: подробный алгоритм и тонкости вычислений

Грамотный выбор батарей – залог функциональности и сбалансированности системы отопления, а значит и комфортного проживания в квартире или доме. На первый взгляд все просто: купил подходящие по габаритам и материалу радиаторы, установил, подключил – и нагрев обеспечен.

Но на деле все усложняется необходимостью определить оптимальную теплоотдачу батарей – она должна отвечать площади отапливаемого помещения и коррелироваться с целым рядом значимых факторов.

Чтобы вы не ошибались в этом вопросе, далее мы с разумным упрощением разберем, как выполнить расчет мощности стальных, чугунных и биметаллических радиаторов и какие особенности жилища и самих батарей влияют на финальный результат.

Способы расчетов

Наиболее упрощенный способ расчета мощности батарей – умножить площадь помещения на усредненное значение мощности радиатора для стандартного обогрева 1 кв.м., а именно – 100 Вт. Имеем формулу: Q = S × 100.

Например, если площадь обслуживаемой комнаты 15 кв.м, то для ее комфортного обогрева понадобится тепловая отдача в 1500 Вт или 150 кВт. Дабы определить количество секций, следует разделить выведенный результат на тепломощность одной радиаторной секции.

Предыдущий расчет справедлив только для комнат со стандартным потолком 2,7 м в высоту. Если же помещение выше, нужно умножить его площадь на высоту и на средний показатель тепломощности для обогрева 1 куб.м. объема помещения, а именно – на 41 Вт для панельного или на 34 Вт для кирпичного дома. Имеем формулу: Q = S × h × 41 (34).

Например, если площадь комнаты в панельной высотке составляет 15 кв.м., а потолок достигает в высоту 3 м, то для обогрева понадобится теплоотдача радиаторов 1845 Вт или 185 кВт.

Пользуясь упрощенными методиками, будьте готовы к неприятным «сюрпризам» – к тому, что установленные батареи с вроде бы правильно рассчитанной мощностью на практике не смогут обеспечивать необходимый обогрев.

Причина этому – целый спектр особенностей, которые вышепредложенные формулы попросту не учитывают.

Вот почему, если вы заинтересованы в максимально точных расчетах, рекомендуем вам пользоваться более серьезной формулой: Q = S × 100 × А × В × С × D× Е × F × G × H × I,
где S – площадь, 100 – общепринятые 100 Вт на квадратный метр.

Все остальные коэффициенты являются выражением разного рода особенностей радиаторов и отапливаемых помещений – разберем их далее по порядку.

Чтобы максимально точно высчитать объем радиаторов — воспользуйтесь формулой

Остекление, площадь и ориентация окон

На окна может приходиться от 10% до 35% теплопотерь. Конкретный показатель зависит от трех факторов: характера остекления (коэффициент А), площади окон (В) и их ориентации (С).

Зависимость коэффициента от вида остекления:

  • тройное стекло или аргон в двойном пакете – 0,85;
  • двойное стекло – 1;
  • одинарное стекло – 1,27.

Объем тепловых потерь напрямую зависит и от площади оконных конструкций. Коэффициент В рассчитывается на базе соотношения общей площади оконных конструкций к площади отапливаемой комнаты:

  • если окна составляют 10% и меньше общей площади комнаты, В = 0,8;
  • 10-20% – 0,9;
  • 20-30% – 1;
  • 30-40% – 1,1;
  • 40-50% – 1,2.

И третий фактор – ориентация окон: тепловые потери в комнате, выходящей на юг, всегда ниже, чем в помещении, которое выходит на север. Исходя из этого имеем два коэффициента С:

  • окна на севере или на западе – 1,1;
  • окна на южной или восточной стороне – 1.

Особенности стен и потолков

Теперь рассмотрим три коэффициента, которые связаны с особенностями стен и потолков отапливаемого помещения: D – число внешних стен, E – уровень теплоизоляции стен, F – высота потолков.

Важно учесть площадь окон и качество их остекления

Чем активнее комната контактирует с внешней средой, тем выше ее теплопотери:

  • если одна внешняя стена, D = 1;
  • две – 1,2;
  • три – 1,3;
  • четыре внешних стены – 1,4.

Чем качественнее утеплены стены, тем ниже теплопотери помещения:

  • если теплоизоляция профессиональная, E = 0,85;
  • поверхностная теплоизоляция – 1;
  • отсутствие теплоизоляции – 1,27.

Чем выше потолки в комнате, тем большая мощность батарей потребуется для ее комфортного обогрева, поэтому, чтобы получить правильный показатель теплоотдачи приборов, учитывается корректирующий коэффициент F:

  • высота 2,7 м и меньше – 1;
  • 2,8-3 м – 1,05;
  • 3-3,5 м – 1,1;
  • 3,6-4 м – 1,15;
  • 4 и выше – 1,2.

Тип подключения батарей

Важнейший фактор, определяющий уровень теплоотдачи отопительных радиаторов, – схема их подключения. В нашей формуле она выражена коэффициентом G – его параметр зависит от характера подключения и расположения приборов:

  • при диагональном подключении с верхней подачей и нижней обраткой – 1;
  • при одностороннем подключении с верхней подачей и нижней обраткой – 1,03;
  • при двустороннем подключении с нижней подачей и нижней обраткой – 1,13;
  • при диагональном подключении с нижней подачей и верхней обраткой – 1,25;
  • при одностороннем подключении с нижней подачей и верхней обраткой – 1,28;
  • при одностороннем подключении с нижней подачей и нижней обраткой – 1,28.

Совет. Одностороннее подключение рекомендуется только в исключительных ситуациях, так как оно чревато самыми высокими теплопотерями – около 22%.

Дополнительные факторы

Осталось два коэффициента – H и I. И хоть они расположены в самом конце формулы, их важность от этого не преуменьшается. H – коэффициент, выражающий климат местности, а I – назначение помещения, которое расположено над отапливаемой комнатой.

Чтобы определить H, берется средняя зимняя температура по региону:

  • до -10 градусов С = 0,7;
  • от -10 градусов С до -15 градусов С = 0,9;
  • от -15 градусов С до -20 градусов С= 1,1;
  • от -20 градусов С до -25 градусов С = 1,3;
  • от -25 градусов С до -35 градусов С = 1,5.

Коэффициент H вычисляется по типу помещения, находящегося выше комнаты, для которой подбираются батареи:

  • неутепленный чердак/техническое помещение – 1;
  • утепленная кровля или отапливаемый чердак/техническое помещений – 0,9;
  • теплая жилая комната – 0,8.

К полученному результату прибавьте 10-15%

Финальные расчеты

Разобравшись во всех коэффициентах, продемонстрируем, как формула работает на практике. Предположим, что батареи подбираются для комнаты с такими характеристиками: площадь – 17 кв.м.

; окна – площадью 20% от общих размеров помещения, выходят на северную сторону и имеют двойное стекло; стены – две внешние с поверхностным утеплением; потолки – 2,8 м; подключение – диагональное с верхней подачей и нижней обраткой; средняя зимняя температура – до -10 градусов С; помещение сверху – теплая жилая комната. Имеем: Q = 17 × 100 × 1 × 1 × 1,1 × 1,2× 1 × 1× 1× 0,7× 0,8 = 1256 Вт или 125 кВт.

Совет. К рассчитанному параметру мощности рекомендуется добавить запас в 10-15%. Но не больше, чтобы зря не переплачивать за лишний теплоноситель.

Получив общее значение мощности, определим, сколько необходимо секций батарей для качественного обогрева комнаты – тут нужно ориентироваться на материал радиаторов:

  • чугунные батареи – теплоотдача одной секции составляет 145 Вт.
  • стальные – 160 Вт;
  • биметаллические – 185 Вт.

Как видите, расчет мощности батарей отопления по площади с поправкой на различные особенности как самих приборов, так и отапливаемых помещений – дело не из простых. Перед вами подробный алгоритм расчетов – только четко ему следуя, вы сможете без помощи специалистов определить мощность радиаторов для создания надежной отопительной системы в своем жилище.

Источник: https://sandizain.ru/otoplenie/radiatory/raschet-moshhnosti-batarej-otopleniya.html

Мощность радиатора. Принцип функционирования. Факторы, влияющие на теплоотдачу. Методики расчета

Мощность радиатора отопления является именно тем параметром, который определяет, насколько эффективно устройство будет нагревать окружающий его воздух. Планируя реконструкцию отопительной системы, нам необходимо освоить методику расчета производительности подобных изделий, так как ни избыток, ни недостаток мощности недопустимы.

Чтобы обеспечить дом теплом, нужно выбирать обогреватели с оптимальной теплоотдачей

Принцип функционирования радиатора

Прежде чем приступать к вычислению эксплуатационных параметров, нам нужно понять, как работает отопительная батарея, и какую величину нам нужно рассчитать для оценки ее эффективности.

Радиатор (неважно, водяной или электрический с масляным теплоносителем) функционирует по достаточно простому принципу:

  • Внутри устройства находятся резервуары, по которым циркулирует нагретый теплоноситель. Горячее вещество поднимается вверх, остывшее – опускается вниз, потому жидкость постоянно находится в движении.

Распределение теплоносителя внутри устройства

Обратите внимание!
У электрических устройств нагрев происходит в самом радиаторе, у водяных — в котле или печи, но в данном случае различия будут несущественными.

  • При движении теплоноситель контактирует со стенками резервуаров, отдавая им часть своего тепла. При этом — чем длительнее время контакта и чем больше разница температур, тем больше тепла отдает жидкость.
  • Нагреваясь изнутри, стенки, в свою очередь, передают тепловую энергию в окружающую среду, нагревая воздух.
  • Для повышения эффективности теплопередачи радиаторы отопления делают в форме ребер, увеличивая площадь поверхности, контактирующей с воздухом. Иногда на поверхности закрепляют дополнительные металлические пластины – они тоже служат для ускорения теплообмена.

Конвекция тепловых потоков в помещении

Обратите внимание!Наличие теплообменных ребер стимулирует конвекцию – движение горячего воздуха между пластинами.

Таким образом, совмещаются два принципа обогрева: радиаторный и конвекторный.

Мощность радиаторов – стальных, чугунных, алюминиевых, биметаллических и т.д. – определяется тем, сколько тепла они могут отдать в окружающую среду за единицу времени. В паспортах к отопительным батареям этот параметр чаще всего прописывают.

Подбор оптимальной теплоотдачи устройства очень важен:

  • В системах централизованного отопления избыточная теплоотдача приводит к перегреву помещения. В итоге нам приходится нести расходы либо на дополнительное проветривание, либо на установку термоклапанов – сам же микроклимат при этом серьезно ухудшается.
  • Если же производительности установленных устройств будет недостаточно, то они будут вынуждены работать на пределе своих возможностей. С одной стороны, это существенно снижает ресурс изделия, а с другой – приводит к периодическому «недотопу», когда температура в помещении ощутимо снижается, несмотря на все старания водогрейного котла.

При недостатке мощности в помещении будет холодно даже при работе системы на пределе возможностей

  • Кроме того, при сильной нагрузке аппарат может банально выйти из строя. Это в первую очередь касается электрических моделей, потому мощность масляного радиатора нужно подбирать с запасом примерно в 20-25%.

Факторы, влияющие на теплоотдачу

Если проанализировать информацию от производителей и экспертов, то можно увидеть, что, например, мощность алюминиевых радиаторов отопления значительно превышает аналогичный показатель у чугунных моделей старого типа.

Это обусловлено различиями в конструкции и в материале:

  • Во-первых, чем больше внутренний объем батареи, тем больше теплоносителя в нее поступает, и тем больше энергии она отдаст. Поэтому вполне логично, что крупное устройство будет греть эффективнее, чем компактное (при прочих равных условиях, естественно). Цена тоже будет отличаться, и не только за счет разницы в стоимости использованного для производства батареи материала.

Внутренняя полость алюминиевого радиатора

  • Во-вторых, производительность зависит от температуры поступающего теплоносителя: чем горячее будет вода, тем больше тепла из нее получится извлечь.
  • В-третьих, чем лучше материал проводит тепло, тем выше будет его теплоотдача. Наименее эффективными по этому показателю являются изделия из чугуна, а за лидирующие позиции конкурируют медные, алюминиевые и биметаллические модели.

Обратите внимание!В среднем мощность одной секции алюминиевого радиатора выше, чем аналогичный показатель для биметаллических (алюминий + сталь или алюминий + медь) конструкций.

Однако на практике имеют значение и нюансы технологии производства, так что эта зависимость не является буквальной.

Фото отдельной секции

Для сравнения ниже приводится таблица мощности радиаторов разного типа. Более подробные сведения о тепловой эффективности некоторых моделей отопительных батарей вы можете найти на схемах, приведенных в статье.

Тип радиатора Теплоотдача одной секции, Вт Объем теплоносителя в одной секции, л
Алюминиевый, межосевое расстояние 500 мм 183 0,27
Алюминиевый, межосевое расстояние 350 мм 139 0,19
Биметаллический, межосевое расстояние 500 мм 204 0,2
Биметаллический, межосевое расстояние 350 мм 136 0,18
Чугунный, межосевое расстояние 500 мм 160 1,45
Чугунный, межосевое расстояние 300 мм 110 1,1

Нужно отметить, что мощность стальных радиаторов отопления, которые имеют панельную структуру, указывается из расчета на все изделие в целом, в то время как для секционных конструкций инструкция часто содержит два значения: теплоотдача секции и этот же параметр для всего радиатора.

Таблица мощности стальных радиаторов отопления: цифры приведены для изделий компании Kermi 11, 22 и 33 типа.

Для подбора батарей по мощности нам в первую очередь нужно рассчитать, какое количество тепла потребляет помещение.

Сделать это можно несколькими способами, так что здесь мы опишем наиболее эффективный:

  • Для начала нам нужно вычислить объем комнаты, умножив ее площадь на высоту.
  • Затем определяем базовую потребность в тепле, умножая объем на нормативный коэффициент в 41 Вт.

Обратите внимание!Это значение справедливо для европейской части РФ.

В южных и северных районах действуют свои нормативы, поскольку климат там существенно отличается.

  • Полученную величину нужно скорректировать для компенсации теплопотерь. Для этого прибавляем по 100 Вт на одно окно и около 200 Вт на входную дверь.
  • Есть и другой подход к компенсации теплопотерь: так, при наличии одного окна и одной внешней стены увеличиваем теплопотребление на 20%, двух окон и двух внешних стен – на 30%, при использовании экранов для радиаторов – еще на 25%.

Поправки на теплопотери

Далее полученную цифру используем для вычисления требуемого количества обогревателей. Для этого делим ее на мощность одной секции радиатора отопления и округляем результат до целого числа.

Вычисление количества секций на простом примере

Итак, попробуем разобраться, как же на практике можно выполнить вычисление своими руками.

Исходные данные таковы:

Алюминиевое изделие с межосевым расстоянием 500 мм

  • Площадь комнаты – 16 м2.
  • Высота потолка — 3,5 м.
  • Одно окно, одна наружная стена.
  • Планируется установка секционных батарей с межосевым расстоянием 500 мм (мощность секции алюминиевого радиатора — 139 Вт).
  • Экраны устанавливаться не будут.

Методика расчета следующая:

  • Определяем объем: 16 х 3,5 = 56м3.
  • Рассчитываем потребность в тепле: 56 х 41 = 2296 Вт.
  • Вводим поправку на наличие окон и наружных стен: 2296 + 2296х0,2 = 2755,2 Вт.
  • Рассчитываем количество секций: 2755,2 / 139 = 19,8.

Чем больше помещение, тем больше точек обогрева должно быть

Соответственно, нам нужно установить не менее 20 секций алюминиевого радиатора. В идеале же нужно приобрести две панели по 10 ребер, расположив их на противоположных стенах для более равномерного обогрева — тогда мощности отопительной системы будет достаточно, чтобы поддерживать в этой комнате оптимальный микроклимат.

Заключение

Зная площадь помещения и вычислив мощность радиатора на 1 м2, мы сможем подобрать отопительные приборы, необходимые для обеспечения комфортной температуры в жилище.

Конечно, всегда можно установить батареи с запасом по производительности, регулируя их работу вручную или автоматически, но все же и здесь без вычислений не обойтись.

Более подробно ознакомиться с методикой определения теплоотдачи батарей вы сможете, просмотрев видео в этой статье.

Источник: https://gidroguru.com/otoplenie/otopit-pribory/radiatory/2940-moshhnost-radiatora

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.